
Suppose data is in two-dimensional space.

The objective for a single datapoint is given by:

𝑓(𝑤
1
, 𝑤

2
, 𝑥, 𝑦) = (𝑤𝑇𝑥 − 𝑦)2 = ((𝑤

1
, 𝑤

2
)𝑇(𝑥

1
, 𝑥

2
) − 𝑦)2 = (𝑤

1
𝑥
1
+ 𝑤

2
𝑥
2
− 𝑦)2

The objective for all datapoints (also known as the empirical risk) is given by

𝐿 =
𝑖=0

𝑛−1

∑ 𝑓(𝑤
1
, 𝑤

2
, 𝑥

𝑖
, 𝑦

𝑖
)

We want to find w1 and w2 that minimize L above. We can do this with a simple gradient descent
procedure. The gradient descent approach is to start with random initial values for all weights
and modify each weight by moving it in the direction of the negative derivative.

1. Initialize weights w1 and w2 to a random value between [-.01,+.01].
2. Calculate initial_objective 𝐿 = 𝑓(𝑤

1
, 𝑤

2
, 𝑥 , 𝑦 )

3. Set previous_objective to L+10
4. while(previous_objective - L > .01):

a. Set previous_objective to L
b. Update w1 by moving it slightly in the direction of the negative derivative. We

have . Our update for w1 will be𝑑𝑓/𝑑𝑤
1
= 2(𝑤

1
𝑥
1
+ 𝑤

2
𝑥
2
− 𝑦) 𝑥

1

.𝑤
1
= 𝑤

1
− η𝑑𝑓/𝑑𝑤

1

c. Update w2 by moving it slightly in the direction of the negative derivative. We

have . Our update for w2 will be𝑑𝑓/𝑑𝑤
2
= 2(𝑤

1
𝑥
1
+ 𝑤

2
𝑥
2
− 𝑦) 𝑥

2

.𝑤
2
= 𝑤

2
− η𝑑𝑓/𝑑𝑤

2

d. We can write the derivative of a function with respect to a vector as the derivative
of each component of the vector. So
𝑑𝑓/𝑑𝑤 = (𝑑𝑓/𝑑𝑤

1
, 𝑑𝑓/𝑑𝑤

2
) =

(2(𝑤
1
𝑥
1
+ 𝑤

2
𝑥
2
− 𝑦) 𝑥

1
,2(𝑤

1
𝑥
1
+ 𝑤

2
𝑥
2
− 𝑦) 𝑥

2
) = 2(𝑤

1
𝑥
1
+ 𝑤

2
𝑥
2
− 𝑦)(𝑥

1
, 𝑥

2
)

e. We can now write our update rule simply as 𝑤 = 𝑤 − η𝑑𝑓/𝑑𝑤
f. Recalculate objective L




